
ByteSex and Squeak
Tim Rowledge tim@rowledge.org

Squeak was originally written for the PowerMac, a big-endian
system. Without wishing to get involved too heavily in the bytesex
wars, this was a mistake. If the gods had meant us to do things in a
big-endian manner they would have given us warped brains. Many
important systems are little-endian, including the Acorn RPC and
that obscure Intel x86 CPU that serves so well as a space heater.
Given this unfortunate state of affairs, it was neccessary to alter
Squeak to be more friendly to little-endian systems. This involved
three sets of changes to the Squeak system.

• Loading the image
• Making BitBLT little-endian capable
• Endian swapping the Form bitmaps

I persisted with using this code for a couple of years but since
Squeak Central wouldn't adopt it the code was eventually
withdrawn. Current Squeak (as of about version 3.4) has much of
the functionality built in as part of supporting external bitmaps on
little endian hardware so that hardware acceleration can be used.

Loading the image.
Obviously much of an image file is byte-sex dependant -- all the
word based values need byte-swapping when an image saved on
one variety of machine is loaded on the opposite sort. Byte based
values such as strings, large integers etc do not need any swapping.
To achieve this we need to:-

1. discover that the image is the wrong endianness for our

loading machine
2. scan the loaded raw image byte-swapping the appropriate

items
3. remember to write the header when saving the image such

that 1) can be done on the next machine to use this image.
It turns out that we can derive the saver's endianness from the
version word in the image header; so long as the image version
word is maintained so that a byteswapped image will yield an
'impossible' version number we can do a simple check. Any 16bit
number, 6502 for example, will byte-swap to a huge value
(1712914432) clearly testable. Once we know we need to byte-
swap then the procedure is quite simple;

Scan the entire loaded image in memory, byte-swapping every
word. This leaves us with all the pointers, headers and class words
in the correct form for our machine, but with Strings etc in the
wrong order.  Rescan the entire image, making use of the now
intelligable headers and class words to re-swap Strings and other
byte objects.

Floats are held in Squeak as IEEE format doubles, and machines
(such as Intel based PCs) which swap the word order of doubles
must handle the word swapping on the fly, rather than
complicating the imageload by having to track the double word-
order as well as byte-sex.

In the 1.18 release of Squeak this loading algorithm is incorporated
in to the Interpreter class code in methods such as
#reverseBytesInImage

Making BitBLT little-endian capable
Within the BitBltSimulationand WarpBltclasses, there is some
code where the bytesex of the words being manipulated is crucial.
In general, anywhere that a mask, shift or scan of a word is done

will be bytesex dependant. On a big-endian machine, the high-
order bits will form the pixels at the left of the screen word
whereas on a little-endian machine they form the right side.

In order to form the left mask for a blt, we need to shift the
AllOnesmask to the 'pixel-right' so that the affected bits are
masked. On a big-endian machine that requires a LEFT shift
instruction.

When doing a multi-bit pixel operation such as blting a form to a
destination of a different pixel depth, we need to scan the words in
the opposite order and carefully reassemble the destination word.

To support this need for two different ways of blting, we tweaked
the CCodeGeneratorto make use of a C macro in the blt code. If
LITTLE_ENDIANis #define'd in the makefile, the macro
ifLittleEndianDoelseDo()will evaluate to the first, little-endian
clause and vice-versa. This leads to Smalltalk code that is perhaps
less pretty than we would like, but keeping both code-paths
together in this way at least helps remind us that the endian issue
has to be dealt with in the method. As an example, consider the
method

!BitBltSimulation methodsFor: 'pixel mapping'!
pickSourcePixels: nPix srcMask: sourcePixMask destMask:
destPixMask
 "This version of pickSourcePixels is for
sourcePixSize <= 8 and colorMap notNil"
 "Pick nPix pixels from the source, mapped by the
color map, and right-justify them in the resulting
destWord."

 | sourceWord destWord sourcePix destPix dstShift
|
 sourceWord _ (interpreterProxy longAt:
sourceIndex).
 destWord _ 0.
 self ifLittleEndianDo:
 [dstShift _ 32 -(nPix * destPixSize)]
 elseDo:[].

 1 to: nPix do: [:i|
 self ifLittleEndianDo:

 [sourcePix _ sourceWord >>
 (srcBitIndex) bitAnd: sourcePixMask]

 elseDo:[sourcePix _ sourceWord >>
 ((32-sourcePixSize) - srcBitIndex)
 bitAnd: sourcePixMask].

 "look up sourcePix in colorMap"
 destPix _ (interpreterProxy

 fetchWord: sourcePix
 ofObject: colorMap)
 bitAnd: destPixMask.

 self ifLittleEndianDo:
 [destWord _ destWord

 bitOr:(destPix<< dstShift).
 dstShift _ dstShift + destPixSize]

 elseDo:[destWord _
 (destWord<< destPixSize) bitOr: destPix].

 (srcBitIndex _ srcBitIndex + sourcePixSize) > 31
 ifTrue: [srcBitIndex _ srcBitIndex - 32.
 sourceIndex _ sourceIndex + 4.
 sourceWord _ interpreterProxy longAt:
sourceIndex]].
 ^ destWord!

The sections in the ifLittleEndianDo:elseDo:are arguably ugly,
but at least the entire implementation is gathered in one place,
helping overall understanding and maintenance.

The changes to the VM have so far been restricted to
destMaskAndPointerInit the mask1 & mask2 bit masks have to be
formed by shifting in opposite directions
sourceSkewAndPointerInit the skew direction has to be reversed
copyLoopPixMap again, the skew direction has to be reversed
pickSourcePixels:* the order in which the source pixels are
extracted and the result pixels are inserted is different between
endians warpLoop again, reverse the skew direction
sourcePixAtX:y:pixPerWord: extract the source pixel from
opposite end of the word warpSourcePixels:xDeltah:yDeltah:
extract and reassemble the pixels differently

Endian swapping Form bitmaps
Form bitmaps are stored as byte objects within the image and so
get to be re-reversed during image loading. It might seem to be
possible to do a further scan for all the Form objects, track down
their bitmap ByteArrays and correct them for byte endianness but
bitmaps need to be pixel reversed rather than byte reversed. Not all
Forms are eight bits per pixel and so a more flexible reversing
algorithm is needed.

We chose to do the Form reversal in the image startup code so that
this pixel depth information could be more easily discoverd, and so
that other classes might be able to perform the same work, or
subclasses of Form could do something different. DisplayScreen
for example need not do a pixel reversal since it will get redrawn
during the startup sequence.

Two primitives are added to the VM

• primitiveReverseForPixelOfDepth which takes a positive 32 bit
number receiver and reverses it for argument deep pixels

• primitiveIsVMLittleEndian which works out if the machine
running the VM is little or big endian

If the endianness stored in the image does not match the
endianness of the VM, then all Forms are pixel reversed by
enumerating their bitmap and calling the
primitiveReverseForPixelOfDepth for each word. This allows
subclasses to redefine the #pixelReversemethod when required a
d also allows unrelated classes to make use of the same capbility.

In pidgin-code this is:-

SystemDictionary startUp

... self isVMLittleEndian = self isImageLittleEndian
 ifFalse: [Form startUp.
self isImageLittleEndian: self isVMLittleEndian]. ...
leads to
Form startUp self withAllSubclasses do:[:cl| cl
 allInstancesDo:[:i| i pixelReverse]]
leads to
Form pixelReverse array _self bits.
1 to: array size do: [:i| array
 at: i
 put: ((array at: i)
 reversePixelsOfDepth: depth)]
which leads to
Integer reversePixelsOfDepth:
primitiveReverseForPixelOfDepth
The latest version of the LEBitBlt source files has added some
changes that should improve the places where pixel bits are being
manipulated by Smalltalk code and that were therefore not fixed by
the primitive changes. It should now be possible to read/write
Forms to filestream properly, and specifying a Form via the
#extent:fromArray:messages now understands endianness.
Methods such as #pixelAt: now work ok, so users such as
#colorAt: should also present no problem. There is still a problem
when inspecting Bitmap arrays, since they should really be able to
swap the numbers we see while inspecting, but they know nothing
of the pixel depth of their owning form. For the moment this is left
as an open question awaiting resolution.

